
STAR Web Services

Quick Start Guide

2010v1

STAR Web Services: Quick Start Guide: 2010v1
Copyright © 2010 Standards for Technology in Automotive Retail
Editor:
David Carver, STAR

Jason Loeffler, Karmak

Contributors:
Jonathan Wilson, Navistar

Russell Shephard, T-Systems

Daniel Hicks, Honda

Charlie Quirt, CIECA

Michelle Vidanes, STAR

v

Table of Contents
I. Revision History ... xi
II. Preface .. xiii

II.I. Purpose ... xiii
II.II. Scope ... xiii
II.III. Audience ... xiii
II.IV. STAR Organization ... xiii

1. Web Services .. 1
1.1. Web Services Overview .. 1
1.2. Web Services Benefits .. 1

2. Web Services Development Frameworks .. 3
2.1. Overview .. 3
2.2. Microsoft .NET ... 3

2.2.1. Web Service Enhancements .. 4
2.3. Java .. 4

2.3.1. Java Web Services ... 4
2.3.2. Apache Axis 1.4 .. 5
2.3.3. Apache Axis 2 ... 5
2.3.4. XML RPC ... 5

3. Web Services Development Tools .. 7
3.1. .NET Tools ... 7
3.2. Java Tools .. 7
3.3. Cross-platform .. 8

4. Web Services Testing Tools ... 9
4.1. Overview .. 9
4.2. SOAPUI ... 9
4.3. OxygenXML ... 9
4.4. XML Spy Enterprise ... 9

5. .NET Examples .. 11
5.1. Obtaining the STAR WSDLs ... 11
5.2. Scope and Limitation .. 11
5.3. Objectives ... 11
5.4. Prerequisites .. 11
5.5. .NET Walkthrough .. 12

5.5.1. .NET Service .. 12
5.5.2. .NET Client .. 16

6. Java Examples ... 21
6.1. JAX-WS 2.x ... 21

6.1.1. Prerequisites ... 21
6.1.2. JAX-WS Walkthrough .. 21

6.2. Apache Axis 2 .. 28
6.2.1. Prerequisites ... 29
6.2.2. Apache Axis 2 Walkthrough ... 29

A. Development Resources .. 35
Works Cited .. 37
Glossary .. 39

vi

vii

List of Figures
5.1. WSDL Extract .. 12
5.2. Visual Studio 2003 Command Prompt .. 12
5.3. Create ASP.NET Web Service ... 13
5.4. Rename Service1.asmx .. 13
5.5. Rename StarWebService .. 14
5.6. Set URL for Web Service ... 14
5.7. Add Web Method to ProcessMessage ... 14
5.8. Add Web Method to Pull Message ... 14
5.9. Add Web Method to Put Message .. 15
5.10. Update Process Message .. 15
5.11. Add Playload Response ... 15
5.12. Modify ASMX Web Service .. 15
5.13. Deployed Web Service .. 16
5.14. Create .NET Client .. 16
5.15. Create Windows Form ... 17
5.16. Add Web Reference .. 17
5.17. Create Function Process Request .. 18
5.18. Copy sample BOD .. 18
5.19. Client Results .. 19
6.1. Import Source ... 23
6.2. JAX-WS Deploy Endpoint .. 25
6.3. Axis 2 Generate Service .. 29
6.4. Axis 2 Modify Skelton .. 30
6.5. Axis 2 Generate AAR ... 30
6.6. Axis 2 Deploy Service .. 31
6.7. Axis 2 Admin Page ... 31
6.8. Axis 2 Available Services ... 32
6.9. Axis 2 Generate Client Code ... 32

viii

ix

List of Examples
6.1. Sample Service ... 22
6.2. Example WSImport command ... 22
6.3. sun-jaxws.xml ... 25

x

xi

Revision History
Revision History

Revision 2008v2 2008 NP

This is the first version of this document. As each subsequent document is published changes will be listed in this section.

Revision 2009v1 March 2009 DAC

• Converted to DocBook format.

• Split .NET and Java examples into separate chapters.

• Added Revision History as its own section.

xii

xiii

Preface

II.I. Purpose
The purpose of this document is to provide a guide for quickly getting up and running with the STAR
Web Services.

II.II. Scope
The STAR Web Services Quick-Start Guide contains a brief introduction to the STAR web services and
the development tools that can be used to create them, as well as some implementation examples. This
document is not intended to be a comprehensive design specification or development reference. It is only
intended to give the reader the information necessary to gain a basic understanding of the STAR web ser-
vices.

II.III. Audience
This document is intended for architects and web developers who are interested in implementing the
STAR web services for STAR BOD document exchange. The document was designed for developers
with existing knowledge of implementation practices of Web Services.

II.IV. STAR Organization
The goal of the Standards for Technology in Automotive Retail (STAR) organization is to develop and
promote the use of voluntary information technology (IT) standards as a catalyst to fulfill the business in-
formation needs of dealers and manufacturers while reducing the time and effort previously required.

To accomplish this goal, STAR has developed a series of Special Interest Groups (SIGs) to address spe-
cific points of interest in the retail automotive industry. These SIGs, comprised of voluntary participants
from member organizations, are chartered with:

1. Developing and maintaining standard messaging formats for dealer communications. STAR currently
supports two formats:

2. Establishing a common messaging architecture for transmitting standard message formats promoting
interoperability among retail system providers (RSPs) and original equipment manufacturers (OEMs)
throughout the retail automotive industry. The Architecture SIG produces a series of documents re-
ferred to as the Transport Package that includes:

xiv

1

Chapter 1. Web Services

Table of Contents
1.1. Web Services Overview .. 1
1.2. Web Services Benefits .. 1

1.1. Web Services Overview
The STAR Web Services transport was designed to provide a platform for secure and reliable delivery of
any type of content in a standardized manner. The chosen architecture neither precludes nor requires at-
tachments outside the body of the SOAP message for transportation of content. The chosen packaging
methodology is well supported by all major Web Services toolkits and infrastructures and meets STAR’s
transport requirements.

1.2. Web Services Benefits

1. Web services do not require the adoption of a common platform, but adherence to the standard proto-
cols. These protocols can be adhered to on most platforms.

2. Web services are very versatile by design.

3. Web services provide for code re-use in which the same web service can be used for several different
clients.

4. Web services can incorporate failover functionality.

5. Web services provide easy integration with external data sources.

2

3

Chapter 2. Web Services Development
Frameworks

Table of Contents
2.1. Overview .. 3
2.2. Microsoft .NET ... 3

2.2.1. Web Service Enhancements .. 4
2.3. Java .. 4

2.3.1. Java Web Services ... 4
2.3.2. Apache Axis 1.4 .. 5
2.3.3. Apache Axis 2 ... 5
2.3.4. XML RPC ... 5

2.1. Overview
A development framework can be defined as a set of patterns, definitions and guidelines that assist how
application development is performed. Many software development tool vendors provide development
frameworks along with their products that include best practices for program design and sample code or
code generators that automatically create commonly used code fragments.

This section contains an overview of some of the most popular development frameworks for web ser-
vices. It can assist you in the selection of a framework for your STAR web services development activi-
ties.

2.2. Microsoft .NET
The Microsoft .NET Framework is a software component that can be added to or is included with Mi-
crosoft Windows operating system. It provides a large body of pre-coded solutions to common program
requirements, and manages the execution of programs written specifically for the framework. The .NET
Framework is a key Microsoft offering, and is intended to be used by most new applications created for
the Windows platform. (wikipedia)

This is the first release of the .NET Framework and is also part of the first release of Microsoft Visual
Studio .NET. The Microsoft .NET Framework is a software component that can be added to or is includ-
ed with Microsoft Windows operating system. It provides a large body of pre-coded solutions to common
program requirements, and manages the execution of programs written specifically for the framework.

The pre-coded solutions that form the framework's class library cover a large range of programming
needs in areas including: user interface, data access, database connectivity, cryptography, web applica-
tion development, numeric algorithms, and network communications. The functions of the class library
are used by programmers who combine them with their own code to produce applications.

Web Service Enhancements

4

2.2.1. Web Service Enhancements
Web Service Enhancements (WSE) is a Visual Studio.Net and .Net Framework add-on created by Mi-
crosoft to support .Net development teams in the development of web services implementing protocols
pertaining to WS-Specifications.

WSE version releases are triggered by changes in WS-Specifications and are independent of .Net Frame-
work releases. The first two versions are compatible with .Net Framework 1.0/1.1 while the latest version
can be deployed with .Net Framework 2.0 and Visual Studio 2005.

WSE 3.0 supports specifications such WS-Security 1.0/1.1, WS-Trust, WS-Secure Conversation, WS-
Policy, WS-Addressing, WS-Reliable Messaging and MTOM, SOAP 1.1 and 1.2. It also includes capa-
bilities to host web service outside IIS including console applications, windows services and forms and
COM+ applications.

WSE Configuration Editor (WSE Settings 3.0 Tool) is a graphical user interface supported in Visual Stu-
dio 2005. It enables user to specify WSE settings such as security, routing, policy, token issuing, diagnos-
tics and messaging rather than editing configuration file directly.

2.3. Java
Java is an extremely prolific language and there are a number of web services frameworks to choose
from. Each framework fits a particular need for implementing web services. The wide variety of frame-
works is both an advantage and a disadvantage for those trying to choose what framework to use. The ad-
vantage is that the developer has a large selection of frameworks and features from which to choose. The
disadvantage is that it can be difficult to determine which framework fits a project’s particular needs. This
section will briefly describe the most popular frameworks, and where one can find more detailed informa-
tion regarding each.

2.3.1. Java Web Services
The Java Web Services Developer's Pack (JWSDP) is a framework stack maintained at the Sun
Developer's Network (Sun). Its purpose is to provide the necessary tools and frameworks for implement-
ing secure and reliable web services using the java runtime. The frameworks included are:

• JAX-WS – Implements the base Web Services specifications, such as, SOAP, WS-I Basic Profile 1.1,
WS-I Attachments Profile 1.0, WS-I Simple SOAP Binding Profile 1.0, and WS-Addressing 1.0

• JAXB – This is a data binding framework for XML. It creates Java class objects for reading and writ-
ing XML files.

• WSIT – Extends the JAX-WS framework, so that it web services created with JAX-WS can interoper-
ability with the Windows Communication Framework. It uses both JAXB and JAX-WS.

• JAXP – A standardized API implemented by many XML parsers used for reading and writing XML
files using either SAX or W3C DOM.

Apache Axis 1.4

5

• XWSS - XML and Web Services Security is a framework for implementing the various WS-Security
specifications. This includes SAML, X509a, and Username and Password.

Unlike the Apache Axis 2 framework which allows for plugging in your own data banding framework,
the Web Services Developer pack only directly supports the JAXB framework. It may be possible to get
the other frameworks to work with it but that is beyond the scope of this document.

2.3.2. Apache Axis 1.4
Apache Axis 1.4 is the redesign and re-implementation of the Apache SOAP framework. It is widely
used and provides support for both a wide variety of SOAP design patterns. Its sole goal is to implement
support for the World Wide Web Consortium's SOAP specification. It is still widely used but is also
limited in its support for more current Web Services specifications.

2.3.3. Apache Axis 2
Apache Axis 2 is a redesign of the Apache Axis 1.4 framework. It has been redesigned to allow a plug-in
architecture to support many of the new web services specifications. Apache Axis 2 also allows you to
choose and implement a variety of XML Data Binding frameworks instead of being locked into one par-
ticular framework. The following are some of the plug-ins that extend Apache Axis 2:

• Apache Sandesha2 – Implements the WS-ReliableMessaging specification.

• Apache Kandula2 – Implements the WS-Coordination specification.

• Apache Rampart – Implements the WS-Security specification including the WS-SecurityPolicy speci-
fication. Like the XWSS framework, this implements support for XML Security, Username and Pass-
word, and XML Signature.

• WS- Addressing support is built into the Apache Axis 2.

• Apache WSS4J – Implements the OASIS Web Services Security Specification.

Apache Axis 2 is where the new development is heading at the Apache Foundation for web services.
 Its plug-in architecture allows it to easily evolve and adapt to the changing web services specifications
(apache).

2.3.4. XML RPC
XML RPC was one of the first specifications implemented. Both Sun and Apache have implementations
of the specification, and XML RPC is supported on a wide variety of platforms. However, even though
XML RPC is still widely used, it is not recommended for STAR implementations as it doesn't have sup-
port for many of the security related features STAR Web Services require. The specification can be
found at the XML RPC homepage (xmlrpc).

6

7

Chapter 3. Web Services Development
Tools

Table of Contents
3.1. .NET Tools ... 7
3.2. Java Tools .. 7
3.3. Cross-platform .. 8

3.1. .NET Tools
This is the first release of the .NET Framework and is also part of the first release of Microsoft Visual
Studio .NET. The Microsoft .NET Framework is a software component that can be added to or is includ-
ed with Microsoft Windows operating system. It provides a large body of pre-coded solutions to common
program requirements, and manages the execution of programs written specifically for the framework.

The pre-coded solutions that form the framework's class library cover a large range of programming
needs in areas including: user interface, data access, database connectivity, cryptography, web applica-
tion development, numeric algorithms, and network communications. The functions of the class library
are used by programmers who combine them with their own code to produce applications.

Probably the most widely used Microsoft.Net tool is the Microsoft Visual Studio.Net development soft-
ware (IDE). The IDE provides specific goal oriented project types and visual functionality, which allow
the developer to take full advantage of the .Net Framework. Example project types include ASP.Net Web
Service, ASP.Net Web Application, and Windows Application. The ASP.Net Web Service project type
provides basic skeleton code of a web service, so the developer need only fill in the details. The Win-
dows Application and ASP.Net Web Application project types provide graphical functionality for the de-
veloper to (for instance) set a “web reference” to a web service, which automatically creates a proxy of
the target web service. This allows the developer to quickly write code to access and communicate with
the target web service.

3.2. Java Tools
In addition to the various frameworks for Java Web Service development, Java also has many develop-
ment environments implementing these frameworks. These tools range from open source to commercial-
ly available tools. Each has its advantages and disadvantages, the tool one chooses depends on many fac-
tors and in particular the environment in which one is targeting their web service implementation.

Eclipse – Web Tools Platform. The Eclipse Foundation's Web Tools Project includes a wide variety
of added functionality for working with Web Services implementations. It includes built in support for
working with Apache Axis 1.4 and Apache Axis 2 frameworks. It also includes a basic set of tools for
working with XML, XSD, and WSDL files. In addition, it includes a Web Services Explorer for testing
and debugging Web Services either developed with the tool or hosted on another system. The Eclipse
Web Tools Platform is a free set of plug-ins available from the eclipse website (eclipse). Additional
functionality such as UML, BPEL and other tools can be downloaded from the Eclipse website.

Cross-platform

8

Netbeans – Enterprise Pack. Netbeans is one of the first Java IDEs on the market is developed with
Sun Microsystems as an open source project. The Enterprise Pack add-in includes support for working
with the Java Web Services Developer's Pack. It also includes several base XML, XSD, and WSDL edit-
ing tools. It also includes a BPEL designer and UML modeling tools.

Rational Software Architect. IBM has built Rational Software Architect on top of the Eclipse Plat-
form and it includes the Eclipse Web Tools Platform as well. In addition, IBM has included tools specific
for working with its IBM Websphere application server, and UML Modeling tools.

Weblogic Workshop. BEA has migrated their Weblogic Worshop IDE to the Eclipse platform and the
Eclipse Web Tools Platform plug-ins. In addition, they have extended this base platform to include tools
for working with XML Beans, enhanced support for a variety of web services frameworks, and the BEA
Weblogic application server.

JBuilder 2007. J-Builder 2007 is CodeGear's, formerly Borland, Java IDE. It has been migrated to us-
ing the Eclipse Platform and Eclipse Web Tools Platform. It also has extended the functionality by in-
cluding both an EJB and Web Services visual designer.

3.3. Cross-platform
XML Spy Professional. XMLSpy™ 2007 by Altova supports development in a wide variety of Web
services platforms including Microsoft .Net, J2EE, and Eclipse.

Stylus Studio. Stylus Studio™ 2007 XML Enterprise Suite, Release 2 by DataDirect Technologies
utilizes an open Web service framework architecture that fully supports frameworks such as Microsoft
SOAP, Microsoft .Net and the open source Web service framework, Apache Axis.

Liquid XML Data Binder. Liquid XML Data Binder™ is a multi-platform data binding framework
for use with XML Schema. It will generate data objects for C#, VB.NET, JAVA, VB6, and C+. It sup-
ports both DTD and W3C XML Schemas. Source code is available for the libraries, allowing for recom-
piling the base application on almost any platform. Liquid XML Data Binder is a product of Liquid
Technologies.

9

Chapter 4. Web Services Testing Tools

Table of Contents
4.1. Overview .. 9
4.2. SOAPUI ... 9
4.3. OxygenXML ... 9
4.4. XML Spy Enterprise ... 9

4.1. Overview
Most toolsets and integrated development environments include some basic testing for the web services
that are developed. Typically this includes a tool that can read an existing WSDL, and communicate to a
server that has already been established. Other tools allow for the complete testing of a web service from
both the server side and the client side. The tools that follow are only a few of the tools that are available
to users, and are a few that STAR members are using to develop and test their Web Services.

4.2. SOAPUI
SOAPUI is a java based tool for testing and working with any type of Web Service. All that is need-
ed is a WSDL file whether stored locally or remotely. The program will read the WSDL and generate
some mock code that can emulate a server or act as a client. SOAPUI comes in two versions. An open
source version that is free, and provides most of the features one will need for testing Web Services. It al-
so comes in a Professional version which extends the testing suite ability and provides some further ad-
vanced features for running test suites.

4.3. OxygenXML
OxygenXML is a full featured XML Integrated Development Environment for working with a wide va-
riety of XML related technologies. It includes a set of programs for working with and testing WSDL
files. The WSDL Analyzer allows you to use an existing WSDL as a client application, and test against
a Server instance. The basic soap envelope and payloads are generated, and available for editing. The
corresponding results received back from the service are available for editing and viewing later. Oxy-
genXML is a commercial application, but is available for a 30 day trial.

4.4. XML Spy Enterprise
XML Spy Enterprise Edition 2008 includes a WSDL Graphical Editor, as well as a SOAP Client and
SOAP Debugger. The latter two allow for interactive debugging of the SOAP messages sent and re-
ceived from a web service. It has the ability to step through the service, set break points, and set condi-
tional break points based on an XPATH expression.

10

11

Chapter 5. .NET Examples

Table of Contents
5.1. Obtaining the STAR WSDLs ... 11
5.2. Scope and Limitation .. 11
5.3. Objectives ... 11
5.4. Prerequisites ... 11
5.5. .NET Walkthrough .. 12

5.5.1. .NET Service .. 12
5.5.2. .NET Client .. 16

5.1. Obtaining the STAR WSDLs
This section will provide the reader with STAR web service implementation examples for a number of
the development frameworks. The implementation examples have been contributed by the STAR mem-
bers that are currently implementing the web services. Currently there are only a few implementation
examples available. As STAR receives examples for additional development frameworks, they will be
added to future releases of the STAR Web Services Quick-Start guide.

5.2. Scope and Limitation
The scope of this section is the construction of a basic asp.net web service generated from the STAR WS-
DL. A windows client application will be created to simulate a user calling and receiving response from
the web service using the ProcessMessage web method.

Microsoft WSE related implementations of WS-Security and WS-Addressing and other STAR require-
ments and/or recommendations are not implemented in this guide.

5.3. Objectives
• Create an ASP.Net Web Service based on a class generated from the STAR WSDL.

• Create a windows form application that calls the web service.

• Client application will call the Web Service’s ProcessMessage function.

• Web service will return the payload to the client with a different ContentID to simulate processing.

5.4. Prerequisites
• A copy of the WSDL from the Star Schema Repository (Schema Version 4.2.4 is used for this exam-

ple).

.NET Walkthrough

12

• Installation of Microsoft Visual Studio.Net 2003.

• .Net Framework 1.1

• 7Zip or similar program able to handle zip files.

5.5. .NET Walkthrough

5.5.1. .NET Service

Procedure 5.1. Generating Web Service Class code from STAR WSDL

1. Retrieve WSDL from Star Schema Repository and extract the StarTransport_2005.wsdl file.

Figure 5.1. WSDL Extract

2. Open Visual Studio 2003 command prompt.

Figure 5.2. Visual Studio 2003 Command Prompt

3. Run wsdl.exe against the extracted WSDL file. By default WSDL generated codes are generated in
C# language. You can optionally specify the target language to ‘VB’ (Visual Basic) by using the /
language parameter. Make sure to execute this command where you have extracted the STAR WS-
DL.

wsdl startransport_2005.wsdl /language:VB

.NET Service

13

Procedure 5.2. Creating the ASP.Net Web Service

1. Open up the Visual Studio .Net 2003 and create a new ASP.Net Web Service Project.

Figure 5.3. Create ASP.NET Web Service

2. Rename the Service1.asmx file to StarWebService.asmx.

Figure 5.4. Rename Service1.asmx

3. Copy contents of generated GenericWebService.vb to the code behind of your new web service
page.

4. Rename the Class name to StarWebService

.NET Service

14

Figure 5.5. Rename StarWebService

5. Set the URL in the class constructor to the actual URL of the web service.

Figure 5.6. Set URL for Web Service

6. Add a WebMethod attribute for each of the STAR WebMethods.

Figure 5.7. Add Web Method to ProcessMessage

Figure 5.8. Add Web Method to Pull Message

.NET Service

15

Figure 5.9. Add Web Method to Put Message

7. Replace the ProcessMessage function’s code with the following line:

Figure 5.10. Update Process Message

8. Insert the following function anywhere inside the class code.

Figure 5.11. Add Playload Response

9. Modify the ASMX file to refence the StarWebService Class.

Figure 5.12. Modify ASMX Web Service

10. Compile the code and run. You should now have a web service that has all three STAR Methods.

.NET Client

16

Figure 5.13. Deployed Web Service

5.5.2. .NET Client
In this section, we will be creating a windows form application that calls the Web Service’s ProcessMes-
sage method.

Procedure 5.3. Creating Web Service Client

1. Create a new windows application project.

Figure 5.14. Create .NET Client

.NET Client

17

2. Create a Windows form that has the following layout:

Figure 5.15. Create Windows Form

3. Add a web reference to the star web service you’ve previously created.

Figure 5.16. Add Web Reference

4. Create a function that would process the request BOD.

.NET Client

18

Figure 5.17. Create Function Process Request

5. Recompile the Client Code.

Procedure 5.4. Running the Client and Web Service Code

1. Run the windows application code and copy any STAR BOD examples from the Repository's exam-
ple folder to the Input BOD text box.

Figure 5.18. Copy sample BOD

2. Click on the Submit button and examine the output BOD and Content IDs in the Diagnostic Textbox.

.NET Client

19

Figure 5.19. Client Results

20

21

Chapter 6. Java Examples

Table of Contents
6.1. JAX-WS 2.x ... 21

6.1.1. Prerequisites ... 21
6.1.2. JAX-WS Walkthrough .. 21

6.2. Apache Axis 2 .. 28
6.2.1. Prerequisites ... 29
6.2.2. Apache Axis 2 Walkthrough ... 29

6.1. JAX-WS 2.x
This example uses Sun’s JAX-WS implementation to create a Web Service and client. The JAX-WS im-
plementation is part of the Metro Web Service framework, a subset of Sun’s Project GlassFish and a con-
tinuation of the work Sun packaged as the Java Web Services Developer Pack (JWSDP). The homepage
for Metro is https://metro.dev.java.net/ . The target runtime for the service is the Apache Tomcat Server.
The client will be a standalone application.

This example was created using the JDK 5.0 Update 14, JAX-WS 2.1.2, and Tomcat 5.5. While some
of the screen shots will show Eclipse 3.3, Eclipse is not required for this example. Eclipse was primarily
used to give a visual representation of the WAR, but it was used in some instances for source editing.

6.1.1. Prerequisites
1. JAX-WS can be downloaded from the JAX-WS homepage at https://jax-ws.dev.java.net/

2. Since our target runtime is Tomcat, refer to the Tomcat homepage (http://tomcat.apache.org/) for
download and installation instructions.

3. Both service and client will be generated using the wsimport tool included with JAX-WS. This tool
can be found in <JAX-WS Install Directory>\jaxws-ri\bin\wsimport.bat. A document describing the
tool is available at <JAX-WS Install Directory>\jaxws-ri\docs\wsimport.html.

6.1.2. JAX-WS Walkthrough

Procedure 6.1. Add Address Information to the WSDL

1. If the WSDL was retrieved from STAR repository, the service information in the WSDL is in-
complete. It must be changed to reflect your Web Service implementation. An unmodified WS-

https://metro.dev.java.net/
https://jax-ws.dev.java.net/
http://tomcat.apache.org/

JAX-WS Walkthrough

22

DL will have an XML comment beginning with “Note to implementors…” along with an ex-
ample of what the address information should look like. The example below is based off of the
ProcessRetailDeliveryReporting.wsdl in Rev5.2.1. Assuming you are running a local instance of
Tomcat, with 8080 as your HTTP port, the service information will look like the following:

Example 6.1. Sample Service

<wsdl:service name="ProcessRetailDeliveryReportingWebService">
 <wsdl:port name="ProcessRetailDeliveryReportingStarTransport" binding="starbindings:starTransport">
 <soap:address location="http://localhost:8080/StarQuickStartService/StarTransport/"/>
 </wsdl:port>
</wsdl:service>

Once the WSDL has been edited with the address information, it can be used by wsimport to pro-
duce source for the service and client, as well as classes for JAXB marshalling and unmarshalling.

2. At a windows command prompt, move to the <JAX-WS Install Directory>\jaxws-ri\bin directory.
Execute the wsimport script. Be sure to set the output location for the source (-s) since the default
behavior is to produce compiled code. This location must already exist since the script will not cre-
ate the directory for you. It will give an error, “directory not found…” if the directory does not exist.
Also, if you run into memory errors, edit the wsimport.bat script to increase the Java heap size. For
this example the initial and maximum values were increased to 512MB, so the launch section of the
wsimport.bat script looked like this (edited section in bold):

%JAVA% %WSIMPORT_OPTS% -Xms512M -Xmx512M -jar "%JAXWS_HOME%\lib\jaxws-tools.jar" %*

Example 6.2. Example WSImport command

wsimport -d classes -s src -verbose C:\JAX-WS\jaxws-ri\bin\STAR\Rev5.1.2\WSDL\ProcessRetailDeliveryReporting.wsdl > results.txt

3. Import the generated source into a WAR, adding the necessary jar files from <JAX-WS Install Di-
rectory>\jaxws-ri\lib

JAX-WS Walkthrough

23

Figure 6.1. Import Source

4. Create the Web Service implementation class. This class can implement the StarTransportPortTypes
interface that was created by wsimport. It is not required that it implement the interface, though it
may help if using an IDE since the IDE can generate the inherited abstract methods. For this exam-
ple, I called my class ProcessRetailDeliveryReportingWebServiceImpl. Once this class is created,
add an annotation above the class declaration to refer to the endpointInterface:

@javax.jws.WebService (endpointInterface="org.starstandards.webservices._2005._10.transport.bindings.StarTransportPortTypes")

5. For now, only add print statements to the implementation class so you can tell when you have called
the method via the client that we will soon create. Below is how your ProcessRetailDeliverWebSer-
viceImpl class should currently look:

JAX-WS Walkthrough

24

package org.starstandards.webservices._2005._10.transport.bindings;

import org.starstandards.webservices._2005._10.transport.AcknowledgeRetailDeliveryReportingPayload;
import org.starstandards.webservices._2005._10.transport.ProcessRetailDeliveryReportingPayload;

@javax.jws.WebService (endpointInterface="org.starstandards.webservices._2005._10.transport.bindings.StarTransportPortTypes")
public class ProcessRetailDeliveryReportingWebServiceImpl implements
 StarTransportPortTypes {

 public AcknowledgeRetailDeliveryReportingPayload processMessage(
 ProcessRetailDeliveryReportingPayload payload) {
 System.out.println("Called processMessage");
 return null;
 }

 @SuppressWarnings("unchecked")
 public AcknowledgeRetailDeliveryReportingPayload pullMessage()
 {
 System.out.println("Called pullMessage!");
 return null;
 }

 public void putMessage(ProcessRetailDeliveryReportingPayload payload) {
 System.out.println("Called putMessage");
 }
}

Before our service is complete, we need to configure the application so that a Web Service call will be
routed to the implementation class we just created. This is done by editing the web.xml and creating a
JAX-WS configuration file, sun-jaxws.xml.

Three items need to be added to the web.xml:

1. A listener reference to the JAX-WS WSServletContextListener

2. A servlet reference to the JAX-WS WSServlet servlet

3. A servlet-mapping reference for the above servlet

For this example, here are those following items:

<listener>
 <listener-class>com.sun.xml.ws.transport.http.servlet.WSServletContextListener</listener-class>
</listener>
<servlet>
 <servlet-name>StarTransportPort</servlet-name>
 <servlet-class>com.sun.xml.ws.transport.http.servlet.WSServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>StarTransportPort</servlet-name>
 <url-pattern>/StarTransport</url-pattern>
</servlet-mapping>

Procedure 6.2. Create the sun-jaxws.xml

1. Now it’s time to create the sun-jaxws.xml. This file resides in the same location as the web.xml, the
WEB-INF folder. Below is the content of the file for this example:

JAX-WS Walkthrough

25

Example 6.3. sun-jaxws.xml

<?xml version="1.0" encoding="UTF-8"?>
<endpoints xmlns="http://java.sun.com/xml/ns/jax-ws/ri/runtime" version="2.0">
 <endpoint
 name="starTransportPortTypes"
 interface="org.starstandards.webservices._2005._10.transport.bindings.StarTransportPortTypes"
 implementation="org.starstandards.webservices._2005._10.transport.bindings.ProcessRetailDeliveryReportingWebServiceImpl"
 url-pattern="/StarTransport"
 />
</endpoints>

Note

Note that the endpoint name is the same as the name that you see on the Java annotation
from the StarTransportPortTypes class. Also, the interface and implementation classes
are provided. The url-pattern provided must match what is in the web.xml file.

2. The service is now ready to deploy. Deploy the WAR to Tomcat or the application server you are
working with. You can confirm installation by accessing the service’s URL. For this example, the
service can be accessed at http://localhost:8080/StarQuickStartServiceJAXWS/StarTransport [http://
localhost:8080/StarQuickStartServiceJAXWS/StarTransport] in a browser. The following should be
returned:

Figure 6.2. JAX-WS Deploy Endpoint

Procedure 6.3. Create JAX-WS Client

1. Now it is time to create the client. Since the client uses the same source files generated by wsim-
port that were used for the service, the only item to create is a new class and method that will use
the generated code to call the service. Below is an example of a test client that calls the PullMessage
method. Since there is currently no implementation code in our service, we will at least see the print
statement (“Called pullMessage”) from the service printed to the standard output of the application
server. Until implementation code is added to the service to return a valid response, this client will
throw an exception.

http://localhost:8080/StarQuickStartServiceJAXWS/StarTransport
http://localhost:8080/StarQuickStartServiceJAXWS/StarTransport
http://localhost:8080/StarQuickStartServiceJAXWS/StarTransport

JAX-WS Walkthrough

26

package org.star.quickstart.client;

import org.openapplications.oagis._9.unqualifieddatatypes._1.IdentifierType;
import org.starstandard.star._5.AcknowledgeRetailDeliveryReportingType;
import org.starstandard.star._5.ApplicationAreaType;
import org.starstandards.webservices._2005._10.transport.AcknowledgeRetailDeliveryReportingContent;
import org.starstandards.webservices._2005._10.transport.AcknowledgeRetailDeliveryReportingPayload;
import org.starstandards.webservices._2005._10.transport.bindings.ProcessRetailDeliveryReportingWebService;
import org.starstandards.webservices._2005._10.transport.bindings.StarTransportPortTypes;

public class TestClient {
 public static void main(String[] args)
 {
 ProcessRetailDeliveryReportingWebService stub = new ProcessRetailDeliveryReportingWebService();
 StarTransportPortTypes port = stub.getProcessRetailDeliveryReportingStarTransport();
 ((javax.xml.ws.BindingProvider)port).getRequestContext().put(javax.xml.ws.BindingProvider.ENDPOINT_ADDRESS_PROPERTY, "http://localhost:8080/StarQuickStartServiceJAXWS/StarTransport");
 AcknowledgeRetailDeliveryReportingPayload payload = port.pullMessage();
 AcknowledgeRetailDeliveryReportingContent content = payload.getContent().get(0);
 AcknowledgeRetailDeliveryReportingType bod = content.getAcknowledgeRetailDeliveryReporting();
 ApplicationAreaType applicationArea = bod.getApplicationArea();
 IdentifierType BODID = applicationArea.getBODID();
 System.out.println("BODID returned: " + BODID.getValue());
 }
}

2. Once you have created the TestClient class, execute the main method and verify that “pullMessage”
has been written to the application server logs by the service.

3. Now that we have verified that the client can communicate to the service, we can add some JAXB
unmarshalling code to service to simulate producing a valid response. Similarly, we can add mar-
shalling code to the client to print out the AcknowledgeRetailDeliveryReporting BOD returned from
the service.

Below is the code added to the pullMessage method of the service implementation class. In this ex-
ample, the BOD is being read straight from the “examples” directory of a STAR repository. Using
the JAXB unmarshaller, the xml data from the file is placed into the Java objects reference by the
AcknowledgeRetailDeliveryReportingType class.

JAX-WS Walkthrough

27

@SuppressWarnings("unchecked")
 public AcknowledgeRetailDeliveryReportingPayload pullMessage()
 {
 System.out.println("Called pullMessage!");
 AcknowledgeRetailDeliveryReportingPayload response = new AcknowledgeRetailDeliveryReportingPayload();
 AcknowledgeRetailDeliveryReportingContent content = new AcknowledgeRetailDeliveryReportingContent();

 try
 {
 JAXBContext jaxbContext = JAXBContext.newInstance("org.starstandard.star._5");
 Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();
 JAXBElement<AcknowledgeRetailDeliveryReportingType> bod =
 (JAXBElement<AcknowledgeRetailDeliveryReportingType>) unmarshaller.unmarshal(new File("C:\\jaxws-ri\\bin\\STAR\\Rev5.2.1\\BODExamples\\AcknowledgeRetailDeliveryReporting.xml"));

 content.setAcknowledgeRetailDeliveryReporting(bod.getValue());
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }

 response.getContent().add(content);

 return response;
}

4. Before adding the marshalling code to the client, deploy the service again with the updated imple-
mentation code from above. Invoke the service with the TestClient created earlier. If successful, the
BOD Id will be printed.

Below is the code added to the TestClient to take the results from the PullMessage call and print the
resulting XML to the standard output stream. The JAXB marshaller is used to get the XML content
from the Java object.

Apache Axis 2

28

package org.star.quickstart.client;

import java.io.StringWriter;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBElement;
import javax.xml.bind.Marshaller;

import org.starstandard.star._5.AcknowledgeRetailDeliveryReportingType;
import org.starstandards.webservices._2005._10.transport.AcknowledgeRetailDeliveryReportingContent;
import org.starstandards.webservices._2005._10.transport.AcknowledgeRetailDeliveryReportingPayload;
import org.starstandards.webservices._2005._10.transport.bindings.ProcessRetailDeliveryReportingWebService;
import org.starstandards.webservices._2005._10.transport.bindings.StarTransportPortTypes;

public class TestClient {

 public static void main(String[] args)
 {
 ProcessRetailDeliveryReportingWebService stub = new ProcessRetailDeliveryReportingWebService();
 StarTransportPortTypes port = stub.getProcessRetailDeliveryReportingStarTransport();
 ((javax.xml.ws.BindingProvider)port).getRequestContext().put(javax.xml.ws.BindingProvider.ENDPOINT_ADDRESS_PROPERTY, "http://localhost:8080/StarQuickStartServiceJAXWS/StarTransport");
 AcknowledgeRetailDeliveryReportingPayload payload = port.pullMessage();
 AcknowledgeRetailDeliveryReportingContent content = payload.getContent().get(0);
 AcknowledgeRetailDeliveryReportingType bod = content.getAcknowledgeRetailDeliveryReporting();

 try
 {
 JAXBContext jaxbContext = JAXBContext.newInstance("org.starstandard.star._5");
 Marshaller marshaller = jaxbContext.createMarshaller();

 JAXBElement<AcknowledgeRetailDeliveryReportingType> processRetailDeliveryReportingElement =
 (new org.starstandard.star._5.ObjectFactory()).createAcknowledgeRetailDeliveryReporting(bod);
 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);
 StringWriter writer = new StringWriter();
 marshaller.marshal(processRetailDeliveryReportingElement, writer);
 String xmlStr = writer.toString();

 System.out.println(xmlStr);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }

 }
}

5. After adding this code to the TestClient class, run the main method again. Now the entire Acknowl-
edgeRetailDeliveryReporting BOD will be printed.

6.2. Apache Axis 2

In this example we will use the Apache Axis2 framework to generate a simple Web Service and client.
The homepage for Axis2 is http://ws.apache.org/axis2/ . The target runtime for the service is the Apache
Tomcat server. The client will be a standalone application.

This example was created using the JDK 5.0 Update 14, Apache Ant 1.6.5, Apache Axis2 release 1.3, and
Tomcat 5.5.

http://ws.apache.org/axis2/

Prerequisites

29

6.2.1. Prerequisites

1. Prerequisites: Follow the instructions on downloading and installing the Axis2 binary distribu-
tion (http://ws.apache.org/axis2/1_3/installationguide.html#standalone1 [http://ws.apache.org/ax-
is2/1_3/installationguide.html#standalone1]).

2. Since our target runtime is Tomcat, refer to the Tomcat homepage (http://tomcat.apache.org/) for
download and installation instructions. Once Tomcat is installed, follow the instructions to install Ax-
is2 (http://ws.apache.org/axis2/1_3/installationguide.html#servlet_container [http://ws.apache.org/ax-
is2/1_3/installationguide.html#servlet_container]).

Both service and client will be generated using the “WSDL2Java” script included with the Axis2 binary
distribution. This script takes a WSDL file as input and generates the appropriate Java classes as output.
The “Axis2 Reference Guide” (http://ws.apache.org/axis2/1_3/reference.html) lists the parameters for
the script and shows example usage.

6.2.2. Apache Axis 2 Walkthrough

6.2.2.1. Axis 2 Service

Procedure 6.4. Axis 2 Service

1. If the WSDL was retrieved from the “STAR Web Services Specifications” document, it is missing a
crucial section in order for the script to properly generate the code. This is the service section, which
contains information specific to your Web Service implementation, including the address of the Web
Service. Assuming you will be running a local instance of Tomcat for this example, the following in-
formation can be added to the STAR WSDL:

<wsdl:service name="StarQuickStartServiceAxis2">
 <wsdl:port name="StarTransport" binding="starbindings:starTransport">
 <soap:address location="http://localhost:8080/StarQuickStartServiceAxis2/StarTransport"/>
 </wsdl:port>
</wsdl:service>

2. Generating server code: Using the aforementioned WSDL2Java script, generate the Java code for the
service. At a windows command prompt, move to the bin directory of your Axis2 installation. Ex-
ecute the WSDL2Java script with the -uri option to specify the location of the STAR WSDL, the -
ss and -sd options to generate the server code and service descriptor, and the -o option to specify the
output location. By default the script generates client code. This is why the options are needed for
the service artifacts.

Figure 6.3. Axis 2 Generate Service

http://ws.apache.org/axis2/1_3/installationguide.html#standalone1
http://ws.apache.org/axis2/1_3/installationguide.html#standalone1
http://ws.apache.org/axis2/1_3/installationguide.html#standalone1
http://tomcat.apache.org/
http://ws.apache.org/axis2/1_3/installationguide.html#servlet_container
http://ws.apache.org/axis2/1_3/installationguide.html#servlet_container
http://ws.apache.org/axis2/1_3/installationguide.html#servlet_container
http://ws.apache.org/axis2/1_3/reference.html

Apache Axis 2 Walkthrough

30

The script will create a src folder for the source code, a resources folder for the services.xml and a
generated wsdl, and an ant build script. These are all the files needed for a simple service implemen-
tation. Note that the generated wsdl is identical to the one specified as input to the script, though for-
matting changes have been made.

3. Modify Service Skeleton with Implementation Code: One of the Java classes generated by
WSDL2Java is a “skeleton” for the code you will eventually implement to handle Web Service
calls. If you modified the WSDL with the service information from above, this class will be named
“StarQuickStartServiceAxis2Skeleton.” Add code to this class to indicate the service is being in-
voked. If you do not modify this class, the methods will throw an UnsupportedOperationException
when called since this is what has been generated by default.

Figure 6.4. Axis 2 Modify Skelton

4. Generate Axis Archive (*.aar) for the Web Service

Once the skeleton class has been modified, the Web Service is ready to be packaged as an Axis
Archive. Using the ant build file generated by WSDL2Java, execute the “jar.server” target.

Figure 6.5. Axis 2 Generate AAR

 Once the script is complete, StarQuickStartServiceAxis2.aar will be in the build/lib folder.

Procedure 6.5. Deploy Web Service to Tomcat

1. The service is ready to be deployed to the application server using the Axis2 Web application you
installed as a part of the prerequisites. If you are using defaults, this application can be accessed at
http://localhost:8080/axis2/ . The page will look similar to the screenshot below.

http://localhost:8080/axis2/

Apache Axis 2 Walkthrough

31

Figure 6.6. Axis 2 Deploy Service

2. Click on the “Administration” link. When prompted to login, the initial username/password is ad-
min/axis2. Refer to the “Apache Axis2 Web Administrator’s Guide” (http://ws.apache.org/ax-
is2/1_3/webadminguide.html) for instructions on how to change the default login as well as other in-
formation regarding the application. Below is a screenshot of the administration console.

Figure 6.7. Axis 2 Admin Page

3. Use the “Available Services” link to check the deployment of the Web Service. You should see the
“StarQuickStartServiceAxis2” listed:

http://ws.apache.org/axis2/1_3/webadminguide.html
http://ws.apache.org/axis2/1_3/webadminguide.html

Apache Axis 2 Walkthrough

32

Figure 6.8. Axis 2 Available Services

6.2.2.2. Axis 2 Client

Procedure 6.6. Generating Client Code

• Using the WSDL2Java script again, generate the Java code for the client. Follow the same steps used
to generate the service, but exclude the -ss and -sd options that were used to generate the service-spe-
cific code. You can also change the output location in order to separate your service and client code.

Figure 6.9. Axis 2 Generate Client Code

Procedure 6.7. Calling the Web Service

1. Use Generated Stub to call Web Service.

The output of WSDL2Java generating a client will be a “Stub” class that will be used to call the Web
Service. For this example, we will use the Stub class to transmit a ProcessPartsOrder BOD via a
PutMessage call. Below is an example of a main method using the StarQuickStartServiceAxis2Stub
generated by WSDL2Java. This code reads the BOD from a file.

Apache Axis 2 Walkthrough

33

package org.star.quickstart.client;

import java.io.*;
import javax.xml.stream.*;
import org.apache.axiom.om.*;
import org.apache.axiom.om.impl.builder.*;
import org.apache.axis2.*;
import org.apache.axis2.databinding.types.*;
import org.starstandards.www.webservices._2005._10.transport.bindings.*;
import org.starstandards.www.webservices._2005._10.transport.bindings.StarQuickStartServiceAxis2Stub.*;

public class TestClient {
 public static void main(String[] args) {
 try {
 String endpoint = "http://localhost:8080/axis2/services/StarQuickStartServiceAxis2";
 StarQuickStartServiceAxis2Stub stub = new StarQuickStartServiceAxis2Stub(endpoint);

 //Create Payload Manifest
 PayloadManifest0 payloadManifest0 = new PayloadManifest0();

 PayloadManifest payloadManifest = new PayloadManifest();
 Manifest manifest = new Manifest();

 manifest.setContentID(new IDRef("Content0"));
 manifest.setElement("ProcessPartsOrder");
 manifest.setNamespaceURI(new URI("http://www.starstandard.org/STAR/5"));
 manifest.setVersion("5.2.1");
 Manifest[] manifestAry = new Manifest[] { manifest };

 payloadManifest.setManifest(manifestAry);
 payloadManifest0.setPayloadManifest(payloadManifest);

 PutMessage putMessage = new PutMessage();
 Payload payload = new Payload();

 //Create Content
 Content content = new Content();
 content.setId(new Id("Content0"));
 //Read in Process Parts Order BOD
 XMLStreamReader parser = XMLInputFactory.newInstance()
 .createXMLStreamReader(
 new FileInputStream("C:\\axis2-1.3\\bin\\STAR\\Rev5.2.1\\BODExamples\\ProcessPartsOrder.xml"));

 StAXOMBuilder builder = new StAXOMBuilder(parser);
 OMElement documentElement = builder.getDocumentElement();

 content.setExtraElement(documentElement);
 payload.addContent(content);
 putMessage.setPayload(payload);

 //Call PutMessage operation
 stub.PutMessage(putMessage, payloadManifest0);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

2. Once this class is complete, it can be used to call the Web Service deployed to Tomcat. If you added
a println statement to the PutMessage method of your skeleton, you should now see the message in
the Tomcat stdout log. The client may receive an error on the response from the service; this is be-
cause additional work is necessary to complete the Web Service and client.

34

35

Appendix A. Development Resources
If you are a current STAR member you will have access to the various web services discussion groups
available within the STAR online collaboration tool. The discussion groups contain valuable information
contributed by STAR and its members regarding the development and implementation of the STAR web
services.

If you are a current member and you do not yet have access to the online collaboration tool, please con-
tact David Carver at dcarver@starstandard.org [mailto:dcarver@starstandard.org] to request a user ac-
count and login instructions.

• STAR Architecture SIG: [http://www.starstandard.org/SIGARCHITECTURE/Architecture] Contains
the latest STAR Transport Package

• STAR XML Schema: [http://www.starstandard.org/SIGXML/XMLSchemas] Contains the latest
STAR Schema Repository

• OASIS: [http://www.oasis-open.org/] Contains numerous web services specifications.

• WS-I.org: [http://www.ws-i.org/] Interoperability profiles for web services.

• Microsoft MSDN Developer Library [http://msdn2.microsoft.com/en-us/library/aa139615.aspx]

• Sun Java JAXB: [https://jaxb.dev.java.net/] A data binding framework for XML and java.

• Apache Axis 2: [http://ws.apache.org/axis2/] A data binding framework for XML, java, and C main-
tained by the Apache Software Foundation.

mailto:dcarver@starstandard.org
mailto:dcarver@starstandard.org
http://www.starstandard.org/SIGARCHITECTURE/Architecture
http://www.starstandard.org/SIGARCHITECTURE/Architecture
http://www.starstandard.org/SIGXML/XMLSchemas
http://www.starstandard.org/SIGXML/XMLSchemas
http://www.oasis-open.org/
http://www.oasis-open.org/
http://www.ws-i.org/
http://www.ws-i.org/
http://msdn2.microsoft.com/en-us/library/aa139615.aspx
http://msdn2.microsoft.com/en-us/library/aa139615.aspx
https://jaxb.dev.java.net/
https://jaxb.dev.java.net/
http://ws.apache.org/axis2/
http://ws.apache.org/axis2/

36

37

Works Cited
Apache Axis 2. March 2009. Apache Software Foundation. http://ws.apache.org/ .

Axis 2 Administration Guide. Dec. 2007. Apache Software Foundation. Dec. 2007. http://ws.apache.org/
axis2/1_3/webadminguide.html .

Axis 2 Reference. Dec. 2007. Apache Software Foundation. Dec. 2007. http://ws.apache.org/ax-
is2/1_3/reference.html .

Apache Tomcat. Dec. 2007. Apache Software Foundation. Dec. 2007. http://tomcat.apache.org/ .

Eclipse Web Tools Platform. March 2009. Eclipse Foundation. 20 Jan. 2008. http://www.eclipse.org/
webtools/ .

Microsoft .NET. 15 Nov. 2007. Wikipedia. http://en.wikipedia.org/wiki/Microsoft.NET .

Java J2EE 1.4. Dec. 2007. java.sun.com. Dec. 2007. http://java.sun.com/j2ee/1.4/download.html .

Java's Web Developers Framework. Dec. 2007. Sun Microsystems. Dec. 2007. http://en.wikipedia.org/
wiki/Microsoft.NET .

Stylus Studio XML Enterprise Suite. March 2009. DataDirect. Dec 2007. http://www.datadirect.com/
index.ssp .

XML RPC. Oct 2007. XMLRPC.com. http://www.xmlrpc.com .

XML Spy Professional. March 2009. Altova. 20. Jan. 2008. http://www.altova.com/products/xml-
spy/xml_editor.html .

http://ws.apache.org/
http://ws.apache.org/axis2/1_3/webadminguide.html
http://ws.apache.org/axis2/1_3/webadminguide.html
http://ws.apache.org/axis2/1_3/reference.html
http://ws.apache.org/axis2/1_3/reference.html
http://tomcat.apache.org/
http://www.eclipse.org/webtools/
http://www.eclipse.org/webtools/
http://en.wikipedia.org/wiki/Microsoft.NET
http://java.sun.com/j2ee/1.4/download.html
http://en.wikipedia.org/wiki/Microsoft.NET
http://en.wikipedia.org/wiki/Microsoft.NET
http://www.datadirect.com/index.ssp
http://www.datadirect.com/index.ssp
http://www.xmlrpc.com
http://www.altova.com/products/xmlspy/xml_editor.html
http://www.altova.com/products/xmlspy/xml_editor.html

38

39

Glossary
Asynchronous In the context of STAR Transport, Asynchronous means that a specific

thread of execution sending a message does NOT wait for an application
level reply before continuing on to other processing or completing execu-
tion.

For example, when a STAR message is sent asynchronously over HTTP,
the thread of execution waits only for an HTTP reply or HTTP error be-
fore continuing, it does not wait for a transport level Acknowledgment
or a business level Acknowledgment before continuing; the environment
executing the thread may expect a Transport level and or Business level
reply to be received later as in inbound message in a completely separate
and unrelated HTTP session.

European Committee for
Standardization / Informa-
tion Society Standardization
System (CEN/ISSS) (CEN/
ISSS)

“CEN/ISSS provides market players with a comprehensive and integrat-
ed range of standardization services and products, in order to contribute
to the success of the Information Society in Europe.” (CEN)

Digital Certificate A digital certificate is an electronic attachment issued by a certification
authority containing credentials such as “name, a serial number, expi-
ration dates, a copy of the certificate holder's public key (used for en-
crypting messages and digital signatures), and the digital signature of the
certificate-issuing authority so that a recipient can verify that the certifi-
cate is real.” (SearchSecurity.com [http://searchsecurity.techtarget.com/
sDefinition/0,,sid14_gci211947,00.html])

Digital Signatures A digital signature (not to be confused with a digital certificate) is an
electronic signature that can be used to authenticate the identity of the
signer of a document, and to ensure that the original content of the mes-
sage is unchanged. The ability to prove that an original signed message
arrived infers that the sender cannot easily repudiate it later.

Extensible Markup Lan-
guage (XML)

Extensible Markup Language (XML) is a standard way of representing
data in human-readable structures to be exchanged between business
partners. XML was developed by the W3C.

Encryption Processing and altering data so only the intended recipient can read or
use it. The recipient of the encrypted data must have the proper decryp-
tion key and algorithms to decipher the data back to its original form.

Organization for the Ad-
vancement of Structured In-
formation Standards (OA-
SIS)

“Organization for the Advancement of Structured Information Stan-
dards (OASIS) is a not-for-profit consortium that drives the develop-
ment, convergence and adoption of open standards for the global infor-
mation society.” (OASIS)

Payload Payload is the data that is being transmitted within a message.

http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci211947,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci211947,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci211947,00.html

40

Synchronous In the context of STAR Transport, Synchronous means that the specific
thread of execution that sent a message waits for an application level re-
ply before continuing on to other processing or finishing execution.

Web Services Web Services are a set of standards and protocols for exchanging xml-
based data between Web-based applications or systems.

Web Service Description
Language (WSDL)

The Web Services Description Language (WSDL) is an XML-based
language used for describing Web services. (Wikipedia [http://
en.wikipedia.org/wiki/WSDL] 2)

WS-I “WS-I is an open industry organization chartered to promote Web ser-
vices interoperability across platforms, operating systems, and program-
ming languages.” (WS-I)

http://en.wikipedia.org/wiki/WSDL
http://en.wikipedia.org/wiki/WSDL
http://en.wikipedia.org/wiki/WSDL

	STAR Web Services
	Table of Contents
	Revision History
	Preface
	II.I. Purpose
	II.II. Scope
	II.III. Audience
	II.IV. STAR Organization

	Chapter 1. Web Services
	1.1. Web Services Overview
	1.2. Web Services Benefits

	Chapter 2. Web Services Development Frameworks
	2.1. Overview
	2.2. Microsoft .NET
	2.2.1. Web Service Enhancements

	2.3. Java
	2.3.1. Java Web Services
	2.3.2. Apache Axis 1.4
	2.3.3. Apache Axis 2
	2.3.4. XML RPC

	Chapter 3. Web Services Development Tools
	3.1. .NET Tools
	3.2. Java Tools
	3.3. Cross-platform

	Chapter 4. Web Services Testing Tools
	4.1. Overview
	4.2. SOAPUI
	4.3. OxygenXML
	4.4. XML Spy Enterprise

	Chapter 5. .NET Examples
	5.1. Obtaining the STAR WSDLs
	5.2. Scope and Limitation
	5.3. Objectives
	5.4. Prerequisites
	5.5. .NET Walkthrough
	5.5.1. .NET Service
	5.5.2. .NET Client

	Chapter 6. Java Examples
	6.1. JAX-WS 2.x
	6.1.1. Prerequisites
	6.1.2. JAX-WS Walkthrough

	6.2. Apache Axis 2
	6.2.1. Prerequisites
	6.2.2. Apache Axis 2 Walkthrough
	6.2.2.1. Axis 2 Service
	6.2.2.2. Axis 2 Client

	Appendix A. Development Resources
	Works Cited
	Glossary

