
ebMS Implementation Guidelines

eb1.1.0 2010v1

ebMS Implementation Guidelines: eb1.1.0 2010v1
Copyright © 2010 Standards for Technology in Automotive Retail
Editor:
David Carver, STAR

Contributors:
Jason Loeffler, Karmak

Russell Shephard, T-Systems

David Carver, STAR

v

Table of Contents
I. Preface .. ix

I.I. Purpose ... ix
I.II. Summary of Changes from EB3.0G001 ... ix
I.III. Scope ... ix
I.IV. Audience .. ix
I.V. Background ... ix
I.VI. References ... x

1. ebMS Messaging ... 1
1.1. ebMS Messaging .. 1

1.1.1. ebMS Message Packaging .. 1
1.1.2. Message Packaging .. 2
1.1.3. Payload Containers ... 3
1.1.4. STAR ebMS Guidelines Message Elements ... 3
1.1.5. ebMS MessageHeader Elements .. 6

2. Implementing the CPA ... 11
2.1. Implementing the CPA .. 11

2.1.1. Overview ... 11
2.1.2. STAR CPA Structure ... 11
2.1.3. PartyInfo Section .. 12

3. Implementing ebMS Reliable Messaging ... 17
3.1. Implementing ebMS Reliable Messaging .. 17

3.1.1. ebMS Delivery Assurance Profiles .. 17
3.1.2. ebMS Delivery Assurance Features ... 18
3.1.3. ebMS Message Integrity ... 19
3.1.4. ebMS CPA Configuration and Examples ... 21

4. Implementing ebMS Message-Level Security .. 25
4.1. Implementing ebMS Message-Level Security .. 25

4.1.1. Digitally Signing a STAR ebMS Message .. 25

vi

vii

List of Figures
1.1. ebMS Message Package .. 2
2.1. STAR CPA Structure .. 12
2.2. Collaboration Role Structure .. 13

viii

ix

Preface

I.I. Purpose
The purpose of this document is to provide guidelines and best practices for implementing the ebXML
protocol specifications when exchanging ebXML messages containing STAR XML BODs.

This document is broken into sections for easier navigation. The following sections are:

• Preface – Overview of the specifications and background

• Section 1 – Message Handling

• Section 2 – Infrastructure

• Appendices – Examples

I.II. Summary of Changes from EB3.0G001
The only change from eb3.0g001 is the version number.

I.III. Scope
This document covers the implementation of the electronic business Messaging Service (ebMS) 2.0 and
electronic business Collaboration Protocol Profile and Agreement (ebCPPA) 2.0 protocols for STAR
message exchange.

I.IV. Audience
This document is intended for application developers and application architects developing STAR
ebXML interfaces.

I.V. Background
The ebXML specifications contain detailed definitions for the ebXML Message Service protocol, Collab-
oration Protocol Profile (CPP) and Collaboration Protocol Agreement (CPA). The specifications do not,
however, define details for implementing these components. Specifically, they do not explicitly define
the formats or acceptable values for many of the elements contained in the ebMS message, CPP, or CPA.
 Elements such as Party Id, Service and Action, and the CPA Id are defined; however the proper formats
and values for these elements are left up to the implementer.

This document will define the STAR guidelines and best practices for implementing the ebXML messag-
ing service and the CPP/CPA. Required and recommended formats and acceptable values will be defined
for key ebXML elements. These implementation guidelines will ensure consistent usage of the ebXML
specifications for all STAR members and help to ensure interoperability.

References

x

I.VI. References
ebXML is an initiative of OASIS (Organization for the Advancement of Structured Information Stan-
dards). The OASIS web site, as well as the specifications referenced in this document can be found using
the following URLs.

OASIS Web Site: http://www.oasis.org [http://www.oasis.org/]

ebMS 2.0 Messaging Service: http://www.ebxml.org/specs/ebMS2.pdf

CPP and CPA Specification v2.0 http://www.ebxml.org/specs/ebcpp-2.0.pdf

http://www.oasis.org/
http://www.oasis.org/
http://www.ebxml.org/specs/ebMS2.pdf
http://www.ebxml.org/specs/ebcpp-2.0.pdf

1

Chapter 1. ebMS Messaging

Table of Contents
1.1. ebMS Messaging .. 1

1.1.1. ebMS Message Packaging .. 1
1.1.2. Message Packaging .. 2
1.1.3. Payload Containers ... 3
1.1.4. STAR ebMS Guidelines Message Elements ... 3
1.1.5. ebMS MessageHeader Elements .. 6

1.1. ebMS Messaging

1.1.1. ebMS Message Packaging

An ebMS Message is a MIME/Multipart message envelope referred to as a Message Package. The Mes-
sage Package is structured in compliance with [SOAP] version 1.1 and SOAP Messages with Attach-
ments [SwA] specifications.

There are two or more logical MIME parts within a Message Package:

1. The Header Container contains one SOAP version 1.1 compliant message that holds the ebMS Head-
er elements. The large majority of ebMS Headers are placed in the SOAP Header, if any Manifest or
SOAP Fault elements occur they are placed in the SOAP Body.

2. Payload Containers, which contain application level payloads. For the STAR XML Infrastructure
project, these will consist mostly of STAR BODs.

Message Packaging

2

1.1.2. Message Packaging

Figure 1.1. ebMS Message Package

Highlights of this packaging format:

• Based on a widely accepted industry de-facto standard SOAP v1.1

• Transport Metadata such as To/From Parties and MessageIDs can be placed in the SOAP Header

• Messages can be simple SOAP messages or more complex messages with multiple payloads

Payload Containers

3

1.1.3. Payload Containers
ebMS version 2.0 and the STAR Transport require that if any payloads are present they MUST be con-
tained in a Payload Container and MUST be referenced by a Header Manifest element entry. Payloads
may be composed of any type of data including and not limited to word processor files, graphics, sound,
EDI, XML or any data that can be digitized. In the context of the STAR XML Infrastructure project, the
payloads will primarily be STAR BODs.

1.1.4. STAR ebMS Guidelines Message Elements
The ebMS Element Summary table (shown below) identifies the critical ebMS message elements for
STAR ebMS Guideline. These elements were identified for the original STAR Message Infrastructure
Guidelines and have been updated to account for changes between ebMS version 1.0 and ebMS version
2.0.

Element / Attribute Name

Required Required if Present (Optional)
 [attribute] default

Infrastructure

Sample/Recommendation

Content-Type text/xml

 Charset UTF-8

?xml

 [version=”1.0”]

 ([encoding]) UTF-8

SOAP-ENV:Header

MessageHeader

[SOAP:mustUnderstand=”1”]

[version=”2.0”]

([id])

From

PartyID Logical identifier

[type] DUNS, string

(Role) Agreed to by both parties, if CPA is used, value
must match CPA

To

PartyID Logical identifier

[type] DUNS, string

 Role Agreed to by both parties, if CPA is used, value
must match CPA

CPAId If no CPA exists,

STAR ebMS Guidelines Message Elements

4

 FromPartyId-ToPartyId-cpa[-x.x]

ConversationId Timestamp + unique host identifier

Service [type] For BOD Payloads: STARBOD

Service For BOD Payloads:

 STAR BOD Noun

Action For BOD Payloads:

 STAR BOD Verb

MessageData

MessageId Service Name concatenated with a period (.) fol-
lowed by the GUID, followed by an at sign (@) fol-
lowed by the company name in domain name for-
mat. Must conform to [RFC2392]

Timestamp UTC with no offsets. Represents the time the mes-
sage was created.

RefToMessageID (Required for Error or Acknowl-
edgement or Pong)

MessageId from earlier message

TimeToLive

MessageOrder

AckRequested

[SOAP:mustUnderstand=”1”]

[signed] false or true

[version=”2.0”]

[SOAP:actor=”urn:oasis:names:tc:ebxml-
msg:actor:ToPartytMSH”]

Acknowledgement

[SOAP:mustUnderstand=”1”]

[SOAP:actor=”urn:oasis:names:tc:ebxml-
msg:actor:nextMSH”]

If present, must match this value

[version=”2.0”]

[id]

Timestamp UTC with no offsets, represents the time the Ac-
knowledgment was created

RefToMessageID MessageID of message being acknowledged

ErrorList Element

[SOAP:mustUnderstand=”1”]

[highestSeverity=(Error I Warning)]

STAR ebMS Guidelines Message Elements

5

[version=”2.0”]

[id]

Error

[codeContext=”URI”

(default=” http://www.ebxml.org/messageSer-
viceErrors ”)

errorCode=(ValueNotRecognized I NotSupported
 I Inconsistent I OtherXml I

 DeliveryFailure I TimeToLiveExpired I Secu-
rityFailure I MimeProblem I

 Unknown)

severity=(Warning I Error)

location (Xpointer I CID)

xml:lang=”en-US”

Id]

ds:Signature Must confirm to the [XMLDSIG] specification.

SOAP-ENV:Body Every direct child of SOAP-ENV:Body
has an automatic attribute of SOAP-
ENV:mustUnderstand=”1”. (see SOAP 1.1 sect
4.3.1)

Manifest Required if one or more payloads (i.e. ebXML
wrapped BOD) are present

[version=”2.0”]

[id]

Reference

[xlink:href] URI of the payload object referenced.

[xlink:type=”simple”]

[id]

Schema

[location] /STAR/Rev1.2/BODs/Stan-
dalone/ProcessPartsOrder.xsd

[version]

Description

xml:lang=”en-US”

StatusRequest

[version=”2.0”]

[id]

http://www.ebxml.org/messageServiceErrors
http://www.ebxml.org/messageServiceErrors

ebMS MessageHeader Elements

6

RefToMessageId MessageId from earlier message

StatusResponse

[version=”2.0”]

RefToMessageId MessageId of the original message being reported
on

TimeStamp The Timestamp of the original message being re-
ported on

[messageStatus= (UnAuthorized | NotRecognized |
Received | Processed | Forwarded]

MessageId of the original message being reported
on

[id]

1.1.5. ebMS MessageHeader Elements

1.1.5.1. From/To PartyId Elements

Within the ebMS MessageHeader, the REQUIRED From and To elements include a PartyId element
which identifies the sending or receiving party for the message. The PartyId element value is defined by
the PartyId type attribute. Commonly used types are the Uniform Resource Identifier (URI) and the Uni-
form Resource Name (URN), however a generic string type is also allowed providing that it is understood
by both parties. STAR recommends the use of the following PartyId types:

• For OEMs and large institutions: The urn:duns type if a DUNS number is available

• For Automotive Dealers: A string type containing the short manufacturer code followed by the dealer
number

• For Non-Automotive Dealers: A string type containing unique identification information.

Examples:

Example of a Volkswagen OEM:

<eb:PartyId type=”urn:duns”>006972475</eb:PartyId>

Example of a Volkswagen Automotive Dealer:

<eb:PartyId type=”string”>VW400110</eb:PartyId>

1.1.5.2. CPAId Element

The CPAId element is a REQUIRED ebXML element. It is a string that identifies the parameters govern-
ing the exchange of messages between the parties. The recipient of a message MUST be able to resolve
the CPAId to an individual set of parameters, taking into account the sender of the message. This does
NOT mean that a formal CPA conforming to the ebXML CPA specification must be in place for ebXML

ebMS MessageHeader Elements

7

messaging to be used. If no formal CPA exists, the CPAId is simply the location of party specific infor-
mation such as IP addresses and dealer Ids. This is a temporary format until party id formats can be estab-
lished in a future versions of this publication.

For STAR, the CPAId element shall have the following format:

 <CPAId>fromPartyId-ToPartyId-cpa</CPAId>

The CPAId may also optionally contain a version number:

 <CPAId>fromPartyId-ToPartyId-cpa-x.x</CPAId>

Examples:

<eb:CPAId>VW400110-006942475-cpa</eb:CPAId>

<eb:CPAId>VW400110-006942475-cpa-1.0</eb:CPAId>

1.1.5.3. ConversationId Element

The REQUIRED ConversationId element is a string identifying the set of related messages that make up
a conversation between two Parties. It MUST be unique within the From and To party pair. The Party ini-
tiating a conversation determines the value of the ConversationId element that SHALL be reflected in all
messages pertaining to that conversation. The value for ConversationId in the STAR XML Infrastructure
environment SHOULD be datestamp + timestamp + a unique host identifier; UTC format is used for dat-
estamp. For example, if two salespeople at the same dealership submit an inquiry at the same time (obvi-
ously from separate terminals), then the algorithm to generate the ConversationId should be such that this
situation would generate two separate ConversationIds.

The ConversationId enables the recipient of a message to identify the instance of an application or pro-
cess that generated or handled earlier messages within a conversation. It remains constant for all mes-
sages within a conversation.

1.1.5.4. Service and Action Elements

The REQUIRED Service and Action elements identify the service that acts on the message.

For STAR XML Infrastructure, the value of the type attribute of the Service element for messages that
contain a STAR BOD payload MUST be “STARBOD” and the value of the Service element MUST be
the STAR BOD Noun. The value of the Action element MUST be the STAR BOD Verb.

Exceptions to this include ebMS standalone error messages and asynchronous acknowledgments, whose
Service Action values are defined by ebMS version 2.0.

An example of the Service and Action elements for an STAR BOD payload follows:

<eb:Service eb:type=”STARBOD”>PartsOrder</eb:Service>

<eb:Action>Process</eb:Action>

ebMS MessageHeader Elements

8

1.1.5.5. MessageData Element

The REQUIRED MessageData element provides a means of uniquely identifying an ebMS message.

MessageId element

Message IDs MUST be Globally unique and conformant to ebMS specifications which require that the
value is conformant to RFC2392.

STAR requires three (3) data elements within the Message ID:

1. Company Name, in domain name format, for example starstandards.org

2. Service Identifier, the name of the service being invoked

3. A Globally Unique Identifier (GUID), as specified in RFC2822 section 3.6.4

The Service Name should be concatenated with a period (.) followed by the GUID, followed by an at sign
(@) followed by the company name in domain name format.

Example:

<eb:MessageId>PartsOrder.323210:e5c74:7ffc@starstandards.org</eb:MessageId>

Timestamp element

The REQUIRED Timestamp is a value representing the creation time of the message header and MUST
be in UTC format (Universal Time Code as defined by ISO 8601).

1.1.5.6. Digital Signature

A STAR ebMS Message can be digitally signed to provide security countermeasures. Application of Dig-
ital Signature is a Recommendation, in other words, conformant implementations should be capable of
processing messages with Digital Signature, but individual implementations may choose not to use Digi-
tal Signature features.

1.1.5.7. Manifest Element

The Manifest is a composite element that summarizes message payloads. A Manifest element MUST be
present if one or more Payloads exist, and all Payloads MUST be referenced in the Manifest. The purpose
of the Manifest is:

• To make it easier to directly extract a particular payload

• To allow an application to determine whether it can process a payload without having to parse it

The structure and content of the Manifest element MUST conform to the ebMS version 2.0 specifications.

ebMS MessageHeader Elements

9

1.1.5.8. Acknowledgment Element

The Acknowledgment element is used by the To Party that received a message, to let the From Party that
sent the message know the message was received. The RefToMessageId in a message containing an Ac-
knowledgment element identifies the message for which the receipt is being generated. The RefToMes-
sageId is the MessageId of the original message.

10

11

Chapter 2. Implementing the CPA

Table of Contents
2.1. Implementing the CPA .. 11

2.1.1. Overview ... 11
2.1.2. STAR CPA Structure ... 11
2.1.3. PartyInfo Section .. 12

2.1. Implementing the CPA

2.1.1. Overview

This section describes the implementation of the CPA for STAR trading partners. This section is not
intended to be a complete description of the CPA and its usage. For a detailed description of the CPA,
please refer to the specifications document referenced in the preface of this document.

The STAR CPA has been designed for maximum flexibility. The Collaboration Roles have been designed
to allow each party to define its own transport, security, and reliable messaging characteristics for each
transaction type.. Channel, Document Exchange, and Transport definitions have also been pre-defined for
every combination of transport type and message delivery option. The CPA parties need only to refer to
the appropriate channel ID and DocExchange ID combination in the DeliveryChannel definition for each
collaboration.

There are a number of benefits to having such a flexible design.

1. BODs or other transactions can be added or removed individually, allowing the CPA to reflect only
those transactions that are actually supported by both parties

2. Those transactions that require more security or reliable messaging properties can have those proper-
ties defined without impacting the other transactions within the CPA

3. Transport definitions can be created for each transaction type. This will allow each BOD to be rout-
ed to a different URL, if necessary. This may be needed in large dealer franchises where the Service,
Parts, and Accounting applications are running on separate physical machines or on separate applica-
tion instances.

2.1.2. STAR CPA Structure

Figure 2.1, “STAR CPA Structure” below is a high-level depiction of the STAR CPA. It displays the pri-
mary CPA elements. Each primary element may have one or more child elements. The STAR implemen-
tation of these elements will be described below. A complete sample CPA can be found in Appendix A:
Example CPA.

PartyInfo Section

12

Figure 2.1. STAR CPA Structure

2.1.3. PartyInfo Section

The PartyInfo element is the heart of the CPA. It defines the identification and security information for
each party, the collaborations (BODs) supported by each party and all of the transaction characteristics for
each collaboration. STAR has defined implementation guidelines for several of the child elements within
the PartyInfo section.

PartyInfo Section

13

2.1.3.1. CPA ID

See section 1.6.2 for the naming conventions for the CPA ID element.

2.1.3.2. Party ID

The naming conventions for the PartyId element are still under development by STAR.

2.1.3.3. Collaboration Roles

The CollaborationRole elements are the heart of the CPA. They are used to define the trading characteris-
tics for each transaction. In the sample CPA shown in Appendix A, each Collaboration Role element is
associated with a STAR BOD using the ProcessSpecification element. The structure of the Collaboration-
Role element is shown in Figure 2.2, “Collaboration Role Structure”.

Figure 2.2. Collaboration Role Structure

2.1.3.4. Process Specification

The ProcessSpecification element defines the BOD type. The value of the name attribute should match
the name attribute in the BPSS document for that BOD.

PartyInfo Section

14

<tns:ProcessSpecification tns:name="PartsOrder" tns:uuid="urn:icann:star.org:bpid:3A4$2.0"
tns:version="2.0" xlink:href="http://www.vwoa.com/po_processing/" xlink:type="simple"/>

2.1.3.5. Role

The role names are defined using the Role element. Again, the Role names should match those in the
BPSS document for the BOD. Currently STAR has defined the role names “Initiator” and “Responder”
for all BOD types.

<<tns:Role tns:name="Initiator" xlink:href="http://www.starstandard.org/processes/3A4.xml#Initiator"
xlink:type="simple"/>

The CPA was designed with two CollaborationRole elements per BOD to allow different messaging and
transport parameters to be defined depending on whether the party is acting as the Initiator or the Respon-
der for a transaction.

2.1.3.6. Service Binding

The ServiceBinding element defines the Service and Action elements that appear in the ebMS message
header

2.1.3.7. Service Element

The Service Element is defined using the BOD Noun value. For example, the ServiceElement for a Part-
sOrder collaboration role would be “PartsOrder”.

<tns:ServiceBinding>

 <tns:Service tns:type="string">PartsOrder</tns:Service>

2.1.3.8. CanSend and CanReceive Elements

The CanSend and CanReceive elements define the ebXML actions associated with each collaboration.
The ebXML action element corresponds to the STAR BOD verb that will be supported by each party. The
ThisPartyActionBinding element within the CanSend or CanReceive element is used to indicate the sup-
ported action. The OtherPartyActionBinding element is a reference to the ID of the other party’s corre-
sponding CanReceive element.

For example, if Party A is an OEM acting as the “Responder” and we are defining the collaboration for
the PartsOrder BOD, the OEM would be capable of sending an “Acknowledge” verb and receiving a
“Process” verb. The CanSend element would contain “Acknowledge” in the ThisPartyActionBinding el-
ement and the ID of Party 2’s corresponding CanReceive element in the OtherPartyActionBinding ele-
ment. The CanReceive element would contain “Process” in the ThisPartyActionBinding element and the
ID of Party 2’s corresponding CanSend element.

CanSend element for Responder collaboration role

<tns:CanSend>

 <tns:ThisPartyActionBinding tns:action="Acknowledge" tns:id="SendPOAck"
tns:packageId="DefaultComposite">

PartyInfo Section

15

#

#

#

 <tns:OtherPartyActionBinding>Party2_ReceiveAckPO</tns:OtherPartyActionBinding>

CanReceive element for Responder collaboration role

<tns:CanReceive>

 <tns:ThisPartyActionBinding tns:action="Process" tns:id="ReceivePO"
tns:packageId="DefaultPackage">

#

#

#

 <tns:OtherPartyActionBinding>Dealer_SendPO</tns:OtherPartyActionBinding>

2.1.3.9. Business Transaction Characteristics

The attributes contained in the BusinessTransactionCharacteristics element will be negotiated and defined
by each party according to their individual requirements.

2.1.3.10. Channel ID

The ChannelId element contains the identifier for the delivery channel that will be used to send or receive
the BOD defined for a particular collaboration. The STAR CPA contains 14 delivery channel definitions.
Each definition defines a different set of transport and message delivery parameters. Each party will de-
termine the appropriate delivery channel types for each of the BODs that they support and assign the re-
quired delivery channel using the ChannelId element.

2.1.3.11. Certificate Info

The certificate section of the STAR CPA is defined using the standard constructs as defined in the ebCP-
PA 2.0 specifications document.

2.1.3.12. Delivery Channel Definitions

As stated above, the STAR CPA contains 14 pre-defined channel types that can be used to define the de-
livery parameters for any collaboration activity by inserting the appropriate ID into the ChannelID ele-
ment.

2.1.3.13. Document Exchange Definitions

The STAR CPA contains 3 pre-defined DocExchange elements, each of which defines a different set of
encryption and non-repudiation settings. A DocExchange ID is associated with Delivery Channel type
definition.

PartyInfo Section

16

2.1.3.14. Transport Definitions

The STAR CPA contains a single transport definition for a standard HTTP connection. Additional trans-
port definitions may defined to support SSL or SMTP transports as needed.

17

Chapter 3. Implementing ebMS Reliable
Messaging

Table of Contents
3.1. Implementing ebMS Reliable Messaging .. 17

3.1.1. ebMS Delivery Assurance Profiles .. 17
3.1.2. ebMS Delivery Assurance Features ... 18
3.1.3. ebMS Message Integrity ... 19
3.1.4. ebMS CPA Configuration and Examples ... 21

3.1. Implementing ebMS Reliable Messag-
ing

3.1.1. ebMS Delivery Assurance Profiles

This section describes how to implement the Delivery Assurance profiles with ebMS version 2.0 and CP-
PA version 2.0.

3.1.1.1. Best-Effort

To enable Best-Effort an ebMS message is sent without using any of the ebMS reliable messaging fea-
tures, in other words, for the sender:

• NO Acknowledgment is requested (AckRequested element is not present)

• NO Duplicate Elimination is requested (DuplicateElimination element is not present)

• NO TimeToLive is specified (TimeToLive element is not present)

• Failed messages are not retried

3.1.1.2. At-Least-Once (Message Acknowledgement)

To enable At-Least-Once an ebMS message sender:

• MUST request an Acknowledgment (AckRequested element is present)

• NO Duplicate Elimination requiested (DuplicateElimination element is not present)

• SHOULD specify TimeToLive (TimeToLive element is present)

ebMS Delivery Assurance Features

18

• MUST retry failed messages

3.1.1.3. At-Most-Once (NOT recommended by STAR for sim-
plicity)

To enable At-Most-Once an ebMS message sender:

• MUST not request an Acknowledgment (AckRequested element is not present)

• MUST request Duplicate Elimination (DuplicateElimination element is present)

• SHOULD specify TimeToLive (TimeToLive element is present)

• MAY retry failed messages

• Parties MUST agree out-of-band to a value for RetryInterval

• Parties MUST agree out-of-band to a value for NumberOfRetries

3.1.1.4. Once-And-Only-Once / Exactly-Once (Guaranteed De-
livery)

Implementers MUST provide and use the following features:

• MUST include an AckRequested element

• MUST include a DuplicateElimination element

• MUST include a TimeToLive element and the value of TimeToLive must conform to TimeToLive >
Timestamp + ((NumberOfRetries + 1) * RetryInterval)

• Parties MUST agree out-of-band to a value for RetryInterval

• Parties MUST agree out-of-band to a value for NumberOfRetries

3.1.2. ebMS Delivery Assurance Features

3.1.2.1. Message Routing

Message Routing in ebMS can be accomplished through a combination of the underlying Transfer proto-
col, data elements in the messages themselves and out-of-band agreements as determined by ebXML CP-
PA.

Routing at the Transfer level is defined by HTTP URLs. At the message level, parties can key off the
ToParty, FromParty, Service, Action and CPAID elements. At the CPPA level, “return addresses” can be
defined. Parties may use a combination of these attributes to route messages in a way that makes sense for
differing business scenarios or system architectures.

ebMS Message Integrity

19

3.1.2.2. Acknowledgment of Receipt

Receipt of an acknowledgment indicates that the original message reached its destination. In other words,
an Acknowledgment signifies only that a message has been received securely and intact, it is not a busi-
ness level Acknowledgment.

ebMS clearly defines the format and content of Acknowledgment messages.

Although ebMS Acknowledgment messages are typically stand-alone messages, this is not required; an
Acknowledgment to a message could be returned as part of a synchronous reply, as a stand-alone asyn-
chronous message or as a part of a separate business message exchange.

An ebMS Acknowledgment contains a RefToMessageID, which is the exact MessageID of the original
message, i.e. the message that is being acknowledged. This allows the sender of the original message to
cross-reference the original message and confirm delivery.

As an option an ebMS Acknowledgment can be signed, which allows the sender to validate that the spe-
cific intended party received the message. Optionally, a signed message can contain a digest of the origi-
nal message, allowing for full Non-repudiation of receipt. In other words, the sender knows who received
the message and the sender can prove that the message was received exactly as sent.

3.1.3. ebMS Message Integrity

3.1.3.1. Content Integrity

Content Integrity is provided in ebMS through the use of XML Digital Signature. An original message
can be signed, allowing the receiver to validate that the contents of the message have not been altered. In
addition, as mentioned above, ebMS Acknowledgements may be signed and may include a digest of the
original message, allowing for Non-repudiation of receipt, in other words the sender can prove that the
message was received by the intended receiver exactly as sent.

3.1.3.2. TimeToLive

The ebMS TimeToLive element is a UTC (Universal Time Code). TimeToLive is a required message el-
ement for Once-And-Only-Once / Exactly-Once message delivery. If a receiver determines that the Time-
ToLive has expired, it must return an error and not process the message.

3.1.3.3. Message Sequencing

ebMS supports the ability to order multiple messages, guaranteeing that the messages are processed in or-
der.

Message Ordering is set using the SequenceNumber element which is a positive integer that must be
unique within a ConversationID. ConversationIDs must be unique within a CPA (Collaborative Partner
Agreement) ID. Effectively, two parties establish one or more contexts for messaging in a Partner Agree-
ment, which may also include such Policies as Delivery Assurance levels and security parameters. Within
this Policy context, unique Conversations are established and sequences of messages (message 1, message
2, message 3,) can be sent.

ebMS Message Integrity

20

A receiver MUST not process a message until all messages in the Conversation with lower sequence
numbers have been received and processed.

If a message is received out of sequence, the receiver MUST format and send an error message notifying
the sender.

3.1.3.4. ebMS Standardized Error Handling and Monitoring

ebMS defines error handling at the SOAP level (SOAP Faults) and at the ebMS level with an error listing
mechanism that provides for both errors and warnings.

In the context of STAR Reliable Messaging, ebMS provides support for Retry, Recovery, TimeOut and
Duplicate Detection.

3.1.3.5. Retry

ebMS supports retransmission of unacknowledged messages. As described above, At-Least-Once and
Once-And-Only-Once / Exactly-Once require the ability to resend messages. ebMS requires sending im-
plementations to store outbound messages and resend them if an Acknowledgement is not received with-
in an agreed upon TimeOut period. The resent message is intended to be exactly the same as the original
message and at the very least it must have the exact same ConversationID and MessageID.

3.1.3.6. Recovery Processes / Message Store

To support Retry and Duplicate Elimination, ebMS requires senders to store outbound messages and re-
quires receivers to store inbound messages in a persistent store. Receivers must maintain inbound mes-
sages for a period of time agreed upon in a CPA Policy element known as PersistDuration. ebMS recom-
mends that the persistent stores be durable (maintain information through a system failure) and resilient
enough to survive the failure of any single software or hardware component. In the case of system failure,
messages must be processed as if the system failure had not occurred.

3.1.3.7. TimeOut

ebMS supports TimeOut through an out-of-band agreement based on CPPA. Parties use CPPA to agree
on values for Retries (NumberOfRetries) and RetryInterval. Implementations are expected to follow the
policy agreements; if a message is sent and not acknowledge within the RetryInterval the sender will retry
the message Retries number of times.

3.1.3.8. Duplicate Detection

ebMS Supports Duplicate Detection through a combination of policy agreements and data elements in in-
dividual messages.

Parties agree via CPPA whether or not to use DuplicateElimination. To support duplicate elimination re-
ceivers are required to durably store MessageIDs. Individual messages that require DuplicateElimination
must contain the DuplicateElimination element.

If a receiver determines a message is a duplicate, it must not forward the message for processing and it
must return to the sender a copy of the original acknowledgment that was sent concerning the original
message.

ebMS CPA Configuration and Examples

21

3.1.4. ebMS CPA Configuration and Examples
A CPA (Collaborative Partner Agreement) is an XML document which represents an agreement between
exactly two parties who will exchange ebXML messages. This agreement defines the names of the parties
involved and the messaging characteristics they will be using. ebXML message exchanges can have var-
ious reliability and security modes and can be synchronous or asynchronous. CPA’s are uniquely identi-
fied in messages using an element named CPAID.

The CPAID attribute of the CollaborationProtocolAgreement element identifies the CPA to the messag-
ing server. It can have any form but the recommendation is to concatenate party names in alphabetical or-
der separated by a dash. For example "ABMotorCo-DEMotorCo". For example:

<tp:CollaborationProtocolAgreement

 Xmlns:tp=http://www.oasis-open.org/committees/ebXML-cppa/schema/cpp-cpa-2_0.xsd

 xsi:schemaLocation=”http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-

 tp:cpaid=” ABMotorCo-DEMotorCo” tp:version=”2_0a”>

The CPA provides two elements for configuring reliable messaging agreements. The ReliableMessaging
tag and the MessagingCharacteristics tag.

The ReliableMessaging tag insures message handlers will create and manage AckRequest and Acknowl-
egment tags in the ebMS message. Without this tag, by default "Best-Effort" or no reliability is used in
the message exchange. Thus optional tp:ReliableMessaging element under tp:ebXMLSenderBinding and
tp:ebXMLReceiverBinding will be required in the implementation.

The ReliableMessaging Tag in the CPA can be configured as follows:

<tp:ReliableMessaging>

 <tp:Retries>5</tp:Retries>

 <tp:RetryInterval>PT2H</tp:RetryInterval>

 <tp:MessageOrderSemantics>NotGuaranteed</tp:MessageOrderSemantics>

</tp:ReliableMessaging>

The MessagingCharacteristics in the CPA can be configured as follows:

<tp:MessagingCharacteristics

 tp:syncReplyMode="none"

 tp:ackRequested="always"

 tp:ackSignatureRequested="none"

ebMS CPA Configuration and Examples

22

 tp:duplicateElimination="always"/>

 </tp:DeliveryChannel>

3.1.4.1. ebMS Once-And-Only-Once Sending Message Behav-
ior

If an MSH is given data by an application needing to be sent reliably to the recipient, the MSH MUST do
the following:

1. Create a message from components received from the application

 The message MUST have a globally unique MessageID.

1. Insert an AckRequested element

2. Save the message in persistent storage

3. Send the message to the recipient

4. Wait for the return of an Acknowledgment Message acknowledging receipt of this specific message
and, if it does not arrive before RetryInterval has elapsed, the message must be resent until an ac-
knowledgment is received or the NumberOfRetries has been reached. If a communications protocol er-
ror is encountered, then take appropriate error handling action.

Here is the sample of Reliable Messaging elements in ebMS message.

…

<eb:MessageHeader>

 …

 <eb:MessageData>

 <eb:MessageId>PartsOrder.323210:e5c74:7ffc@sender.com</eb:MessageId>

 <eb:Timestamp>2003-10-31T12:22:30</eb:Timestamp>

 <eb:TimeToLive>2003-11-01T12:22:30</eb:TimeToLive>

 </eb:MessageData>

</eb:MessageHeader>

<eb:AckRequested

 SOAP-ENV:mustUnderstand="1" eb:signed="true" eb:version="2.0"/>

<eb:DuplicateElimination/>

…

ebMS CPA Configuration and Examples

23

3.1.4.2. ebMS Once-And-Only-Once Receiving Message Be-
havior

If an AckRequested element is present in the received message then the receiver should generate an Ac-
knowledgment Message is only performed when DuplicateElimination tag is present in the incoming
message.

Here is a sample Acknowledgement message that is sent back to the party that sent the AckRequested.

<eb:Acknowledgment SOAP:mustUnderstand="1" eb:version="2.0">

<eb:Timestamp>2001-03-09T12:22:30</eb:Timestamp>

<eb:RefToMessageId>PartsOrder.323210:e5c74:7ffc@sender.com</eb:RefToMessageId>

<eb:From>

 <eb:PartyId>uri:www.example.com</eb:PartyId>

</eb:From>

</eb:Acknowledgment>

24

25

Chapter 4. Implementing ebMS
Message-Level Security

Table of Contents
4.1. Implementing ebMS Message-Level Security .. 25

4.1.1. Digitally Signing a STAR ebMS Message ... 25

4.1. Implementing ebMS Message-Level
Security

4.1.1. Digitally Signing a STAR ebMS Message
It is optional for a specific STAR ebMS message exchange to use Digital Signature, but if a Digital Sig-
nature is applied to a message the signature MUST be in full compliance with [XMLDSIG] and [ebMS
version 2.0].

ebMS version 2.0 is very specific about how to apply Digital Signatures. Though multiple signatures are
allowed, only the first signature is defined. The first signature is a signature over the SOAP Envelope (ex-
cluding the Signature elements themselves) and over all Attachments. ebMS requires specific algorithms
for canonicalization and transformation of the SOAP Envelope. In other words, the sender creates a digi-
tal signature over the SOAP Envelope and all payloads.

A receiver MAY make use of ebXML CPA to associate a Digital Certificate with a sender.

26

	ebMS Implementation Guidelines
	Table of Contents
	Preface
	I.I. Purpose
	I.II. Summary of Changes from EB3.0G001
	I.III. Scope
	I.IV. Audience
	I.V. Background
	I.VI. References

	Chapter 1. ebMS Messaging
	1.1. ebMS Messaging
	1.1.1. ebMS Message Packaging
	1.1.2. Message Packaging
	1.1.3. Payload Containers
	1.1.4. STAR ebMS Guidelines Message Elements
	1.1.5. ebMS MessageHeader Elements
	1.1.5.1. From/To PartyId Elements
	1.1.5.2. CPAId Element
	1.1.5.3. ConversationId Element
	1.1.5.4. Service and Action Elements
	1.1.5.5. MessageData Element
	1.1.5.6. Digital Signature
	1.1.5.7. Manifest Element
	1.1.5.8. Acknowledgment Element

	Chapter 2. Implementing the CPA
	2.1. Implementing the CPA
	2.1.1. Overview
	2.1.2. STAR CPA Structure
	2.1.3. PartyInfo Section
	2.1.3.1. CPA ID
	2.1.3.2. Party ID
	2.1.3.3. Collaboration Roles
	2.1.3.4. Process Specification
	2.1.3.5. Role
	2.1.3.6. Service Binding
	2.1.3.7. Service Element
	2.1.3.8. CanSend and CanReceive Elements
	2.1.3.9. Business Transaction Characteristics
	2.1.3.10. Channel ID
	2.1.3.11. Certificate Info
	2.1.3.12. Delivery Channel Definitions
	2.1.3.13. Document Exchange Definitions
	2.1.3.14. Transport Definitions

	Chapter 3. Implementing ebMS Reliable Messaging
	3.1. Implementing ebMS Reliable Messaging
	3.1.1. ebMS Delivery Assurance Profiles
	3.1.1.1. Best-Effort
	3.1.1.2. At-Least-Once (Message Acknowledgement)
	3.1.1.3. At-Most-Once (NOT recommended by STAR for simplicity)
	3.1.1.4. Once-And-Only-Once / Exactly-Once (Guaranteed Delivery)

	3.1.2. ebMS Delivery Assurance Features
	3.1.2.1. Message Routing
	3.1.2.2. Acknowledgment of Receipt

	3.1.3. ebMS Message Integrity
	3.1.3.1. Content Integrity
	3.1.3.2. TimeToLive
	3.1.3.3. Message Sequencing
	3.1.3.4. ebMS Standardized Error Handling and Monitoring
	3.1.3.5. Retry
	3.1.3.6. Recovery Processes / Message Store
	3.1.3.7. TimeOut
	3.1.3.8. Duplicate Detection

	3.1.4. ebMS CPA Configuration and Examples
	3.1.4.1. ebMS Once-And-Only-Once Sending Message Behavior
	3.1.4.2. ebMS Once-And-Only-Once Receiving Message Behavior

	Chapter 4. Implementing ebMS Message-Level Security
	4.1. Implementing ebMS Message-Level Security
	4.1.1. Digitally Signing a STAR ebMS Message

